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Adiabatic approximation and parametric stochastic resonance in a bistable system
with periodically driven barrier

Andrey L. Pankrato¥ and Mario Salernb
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In this paper we compare the analytical adiabatic exponential approximation and exact numerical description
of fluctuation-induced transitions in a “quartic” potential with periodically driven barrier. We show that the
adiabatic approximation gives an adequate description of the processes in a wide region of parameter space and
the accuracy of the approximation improves with increasing noise intensity. For parameter values outside this
region, a different kind of resonant activation, which we call parametric stochastic resonance, is observed.

PACS numbds): 05.40—a

[. INTRODUCTION The aim of the present paper is twofold. First, we study
fluctuation-induced transitions in a symmetric bistable sys-
One-dimensional Markov processes are widely used atem with a periodically driven barrier to test the limits of
models for fluctuation-induced transitions in polystable non-applicability of the adiabatic exponential approximation
linear systems. In contrast to their relative simplicity, ana-based on exact time characteristics. As a result we find that
lytical descriptions of these processes are available in only the adiabatic approximation works well in a range of param-
restricted number of cases. For example, exact analytical deters wide enough for practical applications. Second, we de-
scriptions of fluctuation-induced transitions in time- scribe a very interesting phenomenon—a kind of “resonant
dependent potentials are possible for linear systems. HowActivation”— [15,16, which cannot be described in the
ever, almost all real app“ca_tions |mp|y motion under timeframeWOI’k of the adiabatic approximation and which, in con-
dependent nonlinear force®.g., different applications in trast with the usual phenomenon, appears in an overdamped
electronics[1—3], stochastic resonandd], and the ratchet system With a periodically _driven potential barrier. This ef-
effect[5,6]). fect mqnn‘ests |tsel.1c by an increase of the decay rat.e.of the
For nonlinear multistable systems the adiabatic approxiProbability, or, equivalently, by the presence of a minimum
mation may be used to obtain the approximate characteristic8 the mean trar}s!tlon 'tlme at a particular value of the fre-
of fluctuation-induced transitiorfg—9]. This approximation quency of the drlv!ng signal. _These resu!ts can t_)e useful for
is valid for small driving frequencies, i.e., for frequencies analysis of the noise properties of practical devices such as

S . Josephson junction$].
§maller than the n0|se_-|nduced hopping refiis The S It should be mentioned that in the present paper we con-
tion of the corresponding Fokker-Planck equation may thergid

. R . er a case somewhat opposite to the one studied in Refs.
be approximated as a steady-state distribution with a SIO‘T’l?—lq, where the nonadiabatic escape problem was solved

time variation. Another application of the adiabatic approxi-ana\ytically in terms of the so-called logarithmic susceptibil-
mation has been the calculation of the decay tim&y iy the approximation of small noise intensity and small
(Kramer's time[10]) and of the corresponding decay prob- modulation of the barrier height. In contrast, here we con-
ability [7,8] or mean first passage tim®FPT) [9]. In this  sjder the situation of adiabatic drivirigharacteristic, for in-
case the time-dependent potential is directly substituted iNtQtance, for Josephson electronic devicesing a modified
the corresponding characteristics obtained for the static pogiabatic approximation that is valid for arbitrary noise in-
tential. This approach was used[®] for the case of a time- tensity and arbitrary amplitude of the driving signal.

ramped force where it was shown to be effective for a wide  The paper is organized as follows. In Sec. Il we introduce
range of parameters. For time-constant potentials, it was al§pe model of a fluctuation-induced transition in bistable time-
demonstrated in Reff11-14 that the temporal evolution of os¢illating potentials. In Sec. Il the adiabatic exponential
different characteristics of a Markov procegsobability and  gpproximation for this potential, based on exact time charac-
averagescan often be described by an exponential approxieristics, is applied and the results are compared with direct
mation with a good accuracy even for a large noise intensityintegration of the corresponding Fokker-Planck equation. We
if the proper time scale is substituted into the factor of thegpgw that for parameter values for which the adiabatic ap-
exponent. This gives hope that the adiabatic approximatiopoximation becomes inadequate, the phenomenon of para-
with some modifications may be used in a significantly widermetric stochastic resonance appears. Finally, in Sec. IV the

range of parameters than before. main results of the paper are summarized.
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d(x,t)=bx*—a(t)x%. )

It is known that the probability density/(x,t) of the Brown-
ian particle in the overdamped limiMarkov procesgsatis-
fies the Fokker-Planck equatigfRPE)

JW(X,t) B dG(X,t)
X
1 9 [de(xt) FPW(X,1)
“Blox| ax WDt (@

Here G(x,t) is the probability currentB=h/kT, h is the
viscosity (in computer simulations we put=1), T is the
temperature,k is the Boltzmann constant, ang(x,t)
=®(x,t)/KT is the dimensionless potential profile. The ini-
tial and the boundary conditions have the following form:

W(x,0)= 8(x—Xq), G(*,t)=0. 3

ADIABATIC APPROXIMATION AND PARAMETRIC . ..

1207

time-constant potentials in the approximation of small noise
intensity in comparison with the barrier height. Recently it
has been demonstratgt2—14 that the kinetics of averages
of Brownian diffusion in time-constant potentials may often
be described by an exponential approximation with good ac-
curacy even for small barrier heightigrge noise intensipy
This suggests adapting the adiabatic approximation to the
present potentiab (x,t) =bx*— a(t)x? by modifying Eq.(6)

as
t
exp[—JO[llrp(t )]dt ]+1

P(XOvt): 2 y

)

where the Kramers time has now been replaced by
Tp(Xo,t"), the exact mean time of transition of the probabil-
ity to the steady-state value(xq,~)=1/2. Following[20],

we have that the static mean transition timgx,) over the
point of symmetryx=0 of the potential is equal to the

In the following we consider the case in which the potentialMFPT [21],

varies periodically in time, i.e., we taka(t) =1+ cos(t
+4) in Eq. (1), wherey is the phase. We shall restrict our-
selves for simplicity to the casg=0, i.e., we suppose that

0 y
To(X0) =T(X0,0)=B f eV f e ¢Mdxdy. (8
XO —

the potential barrier had maximal height which is decreased

during the first half of the period.

Similarly, we write the exponential adiabatic approximation

We are interested in the time evolution of the probability for evolution of the mean coordinate as

of finding the Brownian particle in the left potential well,

0
P(t)= fﬁwW(x,t)dx, (4)

t 1
m(xo,t):<x(t)>=xoex —fomdt’ , (9
mAA0

wherer,(Xo,t") is the exact characteristic time of evolution

as well as in the evolution of the mean coordinate of theof the mean coordinate. For time-constant symmetric poten-

particle,

m(t)=(x(t))= Jf:xW(x,t)dx (5)

(we assume that the particle is initially located in the left
minimum). Since in the course of time the potential barrier

moves up and dowfremaining symmetric in timeone has
that the probability of finding a particle in the left minimum
will tend to one-half. In the following we shall use the ex-

tials the quantityr,,(Xg) can be obtained using the approach
of Malakhov[22] and is expressed in the following form
[14]:

B + oo Xo
f xe**”(x)dxf e?Wduy
Xo|Jo 0

Tm(Xo) = -
X0 X
+f xe*‘P(X)f e*”(“)dudx]. (10)
0 Xg

ponential adiabatic approximation to compute the probabilitf x,=0, it is not difficult to check thatr,(x;)=0. The
and the mean coordinate of the particle as functions of timeimits of validity of the exponential adiabatic approximation

Ill. ADIABATIC APPROXIMATION AND PARAMETRIC
STOCHASTIC RESONANCE

The exponential adiabatic approximatiph8] was intro-

may then be investigated by comparing E¢R8.and (9) di-
rectly with numerical simulations of the Fokker-Planck equa-
tion in Eq. (2). In the following for simplicity we fixb=1,
a(0)=2, so that the maximal barrier heightd ,,,=Ad(t
=0)=1. The noise intensitkT is considered to be a free

duced within the context of stochastic resonance and it iﬁarameter that varies in the range 0.1 to 2. In the numerical

based on the concept of the time-dependent escaper(irje
If we consider the decay of a metastable stalxg,0)
=1, P(Xq,%)=0], we have that, within this approximation,
the probability of finding a particle at the tintein the po-
tential minimum has the forrfi7,8]

t 1
P(Xo,t) =ex —JOT (t,)dt
K

(6)

calculations described below we always used an initial dis-
tribution located exactly in the minimum of the left potential
well, xo= —1. With this choice we found that the exponen-
tial approximation gives minimal error in the evolution of the
mean coordinatéthe probability, as an integral characteris-
tic, is rather independent of the location of the initial distri-
bution).

A comparison between the adiabatic exponential approxi-
mation(7) (dashed lingsand the results of a computer simu-

where 7« (t") denotes the approximate mean time of decaylation (solid lines, for different values of the noise intensity,

(Kramers time[10]), obtained for Brownian diffusion in

is presented in Figs. 1-3 for the decay probability. These
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FIG. 1. Evolution of the decay probability for different values of  FIG. 3. Evolution of the decay probability for different values of
noise intensityw=0.1; solid lines—results of computer simulation, noise intensityw=1; solid lines—results of computer simulation,
dashed lines—adiabatic approximatign) (plotted variables are dashed lines—adiabatic approximati¢n) (plotted variables are
dimensionless dimensionless

figures refer to frequency values, respectivedy 0.1, 0.5, lines from the numerical resultgcontinuous curvesis

and 1.0. We see that fav=0.1 (or less, the adiabatic ap- larger than in the previous case. This can be ascribed to a
proximation for the decay probability is in perfect agreementhigher sensitivity of the mean coordinate to the location of
with the results of the computer simulation with an error ofthe initial distribution(namely, at higher frequencies the po-
the order of a few percergthe error is of the same order as tential minimum is effectively shifted from the poing=

the one found for time-constant potentials at the same param- 1 so that the initial distribution at the potential slope leads
eter valued12,13). On increasing the frequency, the error to a higher error From these results we can say that the
increases and it depends significantly on the noise intensitynodified adiabatic approximation is valid in the low fre-
In particular, from Figs. 2 and 3 we see that the deviation ofjuency and large noise intensity limit. On the other hand, in
the adiabatic approximation from the numerical results dethe region where the adiabatic approximation becomes inad-
creases with increasing noise intensity. This fact is moreequate, i.e., high frequencies and small noise intensities, we
clearly seen atw=1, where for small noise intensities the found an interesting resonant phenomenon that resembles the
decay of the probability occurs during a few periods of the“resonant activation” reported for systems with fluctuating
driver. We remark, however, that even at such high frequenpotential barrier in Refd.15,16. To describe this phenom-
cies the adiabatic approximation gives quantitatively goocenon, consider the curves of the probability evolutiorkat
estimates. Similar comparisons for the time evolution of the=0.1 and for different values of the driving frequency as
mean coordinate are reported in Figs. 4—6. Here we see thegported in Fig. 7a similar description can be given for the
the deviation of the adiabatic approximatidf) (dashed evolution of the mean coordinateWe see that the decay
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FIG. 2. Evolution of the decay probability for different values of ~ FIG. 4. Evolution of mean coordinate for different values of
noise intensityw = 0.5; solid lines—results of computer simulation, noise intensityw=0.1; solid lines—results of computer simulation,
dashed lines—adiabatic approximatign) (plotted variables are dashed lines—adiabatic approximati¢® (plotted variables are
dimensionless dimensionless
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FIG. 5. Evolution of mean coordinate for different values of  FIG. 7. Evolution of the decay probability for different values of
noise intensityw = 0.5; solid lines—results of computer simulation, frequency fork T=0.1 (plotted variables are dimensionlgss
dashed lines—adiabatic approximati¢® (plotted variables are

dimensionless sities (for kT=1 the effect has the order of the erromn

spite of the similarity with the resonant activation phenom-
c&non, we remark that the potential barrier is not fluctuating
gccording to some probability distribution but oscillates in
mtime, and the system is in the overdamped regiresonant
Sctivation is more characteristic for underdamped systems as
discussed in Ref8]). The presence of a parametric periodic
forcing and of an external noise makes it natural to call this

time of the probability has a minimum at~1 (an increase
or decrease of the frequency away from this value reduc
the decay rate of the probabiljtyThis resonant phenomenon
can be characterized also in terms of the mean transition ti
7(w) defined via probability evolution §22,20,12,13

fw[p(t)_ P(%)]dt effect “parametric stochastic resonance.” _
0 In Fig. 8 the dashed lines denote the results of the adia-
T(w)= [P(0)—P(%)] - (1D patic approximation. We see that although this approxima-

tion fails to describe the parametric stochastic resonance, it
works well in a wide range of parameters up to frequency

[Note that, in analogy with time-constant potentig&0], el ,
n.o~1 for small noise intensitynote that the error decreases

7(w) coincides with the corresponding MFPT for the co o =
sidered symmetric time-dependent case also, as one c¥fth increase of noise intensity .
check numerically; In Fig. 8 we report the mean transition /& have to mention here that taking the phase of the

times7(w) as a function of the frequency for different values drVing signal into considerationy(+0) will lead to signifi-
of noise intensity. We see thatleT=0.1, 7() has a mini- cantly different behavior of the mean transition tifidl) in
mum atw~1 which almost disappears at large noise inten-{N€ lov‘_’ f_r_eqqency regime because the pote_ntlal barrier height
at the initial instant will have a large excursi@inom 0 to 1)

depending on the phase. However, preliminary results show

that if the phase is randomly chosen, after averaging on it,
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FIG. 6. Evolution of mean coordinate for different values of
noise intensityw=1; solid lines—results of computer simulation, FIG. 8. Mean decay time(w) [Eq. (11)] as a function of fre-
dashed lines—adiabatic approximati@ (plotted variables are di- quency: solid lines—results of computer simulation; dashed lines—
mensionless adiabatic approximatiofi7) (plotted variables are dimensionlgss
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we get qualitatively similar result&@ detailed investigation thing is that the adiabatic approximati¢®) usually used in

of this phenomenon will be reported elsewhere the limit of small noise intensity, in reality works bettamp
Finally, we remark that the solid curvegw) in Fig. 8 to higher frequencies of driving signdior larger noise in-

can easily be approximated at the extreme frequency regiontensity. This could be due to the fact that the adiabatic ap-

Indeed, forow—o (high frequency limit the cosine term in  proximation[7,8] is based on the concept of instantaneous

the coefficienta(t) =1+ cost) averages to 1 so that the escape and for higher noise intensity the escape becomes

potential reduces to the time-independent poterti&x,t) faster.

=bx*—x? and 7(w) is expressed via the MFPT. On the Inthe parameter range where the adiabatic approximation

other hand, for &w=1, we can use the adiabatic approxi- fails, we have shown the existence of a different kind of

mation (11) and(7) described above. resonant activation which we called parametric stochastic
Unfortunately, an analytical description of these curvesresonance. This phenomenon consists in the appearance of a

for the whole frequency range as a function of the noisemaximum in the decay rate of the probability or, equiva-

intensity is presently lacking, this being an interesting prob4ently, in a minimum in the mean transition time at a particu-

lem for future investigations. lar value of the frequency of the driving signal. The exis-
tence of this phenomenon in Josephson devices is presently
IV. CONCLUSIONS under investigation23].

We have studied fluctuation-induced transitions in a
“quartic” potential with a periodically driven barrier. We ACKNOWLEDGMENTS
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