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Adiabatic approximation and parametric stochastic resonance in a bistable system
with periodically driven barrier

Andrey L. Pankratov* and Mario Salerno†

Department of Physical Sciences ‘‘E.R. Caianiello,’’ University of Salerno, via S. Allende, I84081 Baronissi (SA), Italy
~Received 19 August 1999!

In this paper we compare the analytical adiabatic exponential approximation and exact numerical description
of fluctuation-induced transitions in a ‘‘quartic’’ potential with periodically driven barrier. We show that the
adiabatic approximation gives an adequate description of the processes in a wide region of parameter space and
the accuracy of the approximation improves with increasing noise intensity. For parameter values outside this
region, a different kind of resonant activation, which we call parametric stochastic resonance, is observed.

PACS number~s!: 05.40.2a
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I. INTRODUCTION

One-dimensional Markov processes are widely used
models for fluctuation-induced transitions in polystable no
linear systems. In contrast to their relative simplicity, an
lytical descriptions of these processes are available in on
restricted number of cases. For example, exact analytica
scriptions of fluctuation-induced transitions in tim
dependent potentials are possible for linear systems. H
ever, almost all real applications imply motion under tim
dependent nonlinear forces~e.g., different applications in
electronics@1–3#, stochastic resonance@4#, and the ratchet
effect @5,6#!.

For nonlinear multistable systems the adiabatic appro
mation may be used to obtain the approximate characteri
of fluctuation-induced transitions@7–9#. This approximation
is valid for small driving frequencies, i.e., for frequenci
smaller than the noise-induced hopping rates@8#. The solu-
tion of the corresponding Fokker-Planck equation may th
be approximated as a steady-state distribution with a s
time variation. Another application of the adiabatic appro
mation has been the calculation of the decay ti
~Kramer’s time@10#! and of the corresponding decay pro
ability @7,8# or mean first passage time~MFPT! @9#. In this
case the time-dependent potential is directly substituted
the corresponding characteristics obtained for the static
tential. This approach was used in@9# for the case of a time-
ramped force where it was shown to be effective for a w
range of parameters. For time-constant potentials, it was
demonstrated in Refs.@11–14# that the temporal evolution o
different characteristics of a Markov process~probability and
averages! can often be described by an exponential appro
mation with a good accuracy even for a large noise intens
if the proper time scale is substituted into the factor of
exponent. This gives hope that the adiabatic approxima
with some modifications may be used in a significantly wid
range of parameters than before.
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di Salerno. Electronic address: salerno@sa.infn.it
PRE 611063-651X/2000/61~2!/1206~5!/$15.00
s
-
-
a
e-

w-

i-
cs

n
w
-
e

to
o-

e
so

i-
y,
e
n
r

The aim of the present paper is twofold. First, we stu
fluctuation-induced transitions in a symmetric bistable s
tem with a periodically driven barrier to test the limits o
applicability of the adiabatic exponential approximatio
based on exact time characteristics. As a result we find
the adiabatic approximation works well in a range of para
eters wide enough for practical applications. Second, we
scribe a very interesting phenomenon—a kind of ‘‘reson
activation’’— @15,16#, which cannot be described in th
framework of the adiabatic approximation and which, in co
trast with the usual phenomenon, appears in an overdam
system with a periodically driven potential barrier. This e
fect manifests itself by an increase of the decay rate of
probability, or, equivalently, by the presence of a minimu
in the mean transition time at a particular value of the f
quency of the driving signal. These results can be useful
analysis of the noise properties of practical devices such
Josephson junctions@3#.

It should be mentioned that in the present paper we c
sider a case somewhat opposite to the one studied in R
@17–19#, where the nonadiabatic escape problem was sol
analytically in terms of the so-called logarithmic susceptib
ity in the approximation of small noise intensity and sm
modulation of the barrier height. In contrast, here we co
sider the situation of adiabatic driving~characteristic, for in-
stance, for Josephson electronic devices!, using a modified
adiabatic approximation that is valid for arbitrary noise i
tensity and arbitrary amplitude of the driving signal.

The paper is organized as follows. In Sec. II we introdu
the model of a fluctuation-induced transition in bistable tim
oscillating potentials. In Sec. III the adiabatic exponent
approximation for this potential, based on exact time char
teristics, is applied and the results are compared with di
integration of the corresponding Fokker-Planck equation.
show that for parameter values for which the adiabatic
proximation becomes inadequate, the phenomenon of p
metric stochastic resonance appears. Finally, in Sec. IV
main results of the paper are summarized.

II. MODEL

Consider a process of Brownian diffusion in a potent
profile
1206 ©2000 The American Physical Society
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F~x,t !5bx42a~ t !x2. ~1!

It is known that the probability densityW(x,t) of the Brown-
ian particle in the overdamped limit~Markov process! satis-
fies the Fokker-Planck equation~FPE!

]W~x,t !

]t
52

]G~x,t !

]x

5
1

B H ]

]x Fdw~x,t !

dx
W~x,t !G1

]2W~x,t !

]x2 J . ~2!

Here G(x,t) is the probability current,B5h/kT, h is the
viscosity ~in computer simulations we puth51), T is the
temperature,k is the Boltzmann constant, andw(x,t)
5F(x,t)/kT is the dimensionless potential profile. The in
tial and the boundary conditions have the following form

W~x,0!5d~x2x0!, G~6`,t !50. ~3!

In the following we consider the case in which the poten
varies periodically in time, i.e., we takea(t)511cos(vt
1c) in Eq. ~1!, wherec is the phase. We shall restrict ou
selves for simplicity to the casec50, i.e., we suppose tha
the potential barrier had maximal height which is decrea
during the first half of the period.

We are interested in the time evolution of the probabil
of finding the Brownian particle in the left potential well,

P~ t !5E
2`

0

W~x,t !dx, ~4!

as well as in the evolution of the mean coordinate of
particle,

m~ t !5^x~ t !&5E
2`

1`

xW~x,t !dx ~5!

~we assume that the particle is initially located in the l
minimum!. Since in the course of time the potential barr
moves up and down~remaining symmetric in time! one has
that the probability of finding a particle in the left minimum
will tend to one-half. In the following we shall use the e
ponential adiabatic approximation to compute the probab
and the mean coordinate of the particle as functions of ti

III. ADIABATIC APPROXIMATION AND PARAMETRIC
STOCHASTIC RESONANCE

The exponential adiabatic approximation@7,8# was intro-
duced within the context of stochastic resonance and
based on the concept of the time-dependent escape timet(t).
If we consider the decay of a metastable state@P(x0,0)
51, P(x0 ,`)50], we have that, within this approximation
the probability of finding a particle at the timet in the po-
tential minimum has the form@7,8#

P~x0 ,t !5expH 2E
0

t 1

tK~ t8!
dt8J , ~6!

wheretK(t8) denotes the approximate mean time of dec
~Kramers time @10#!, obtained for Brownian diffusion in
l
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time-constant potentials in the approximation of small no
intensity in comparison with the barrier height. Recently
has been demonstrated@12–14# that the kinetics of average
of Brownian diffusion in time-constant potentials may ofte
be described by an exponential approximation with good
curacy even for small barrier heights~large noise intensity!.
This suggests adapting the adiabatic approximation to
present potentialF(x,t)5bx42a(t)x2 by modifying Eq.~6!
as

P~x0 ,t !5

expH 2E
0

t

@1/tp~ t8!#dt8J 11

2
, ~7!

where the Kramers time has now been replaced
tp(x0 ,t8), the exact mean time of transition of the probab
ity to the steady-state valueP(x0 ,`)51/2. Following @20#,
we have that the static mean transition timetp(x0) over the
point of symmetryx50 of the potential is equal to the
MFPT @21#,

tp~x0!5T~x0,0!5BE
x0

0

ew(y)E
2`

y

e2w(x)dxdy. ~8!

Similarly, we write the exponential adiabatic approximati
for evolution of the mean coordinate as

m~x0 ,t !5^x~ t !&5x0 expH 2E
0

t 1

tm~x0 ,t8!
dt8J , ~9!

wheretm(x0 ,t8) is the exact characteristic time of evolutio
of the mean coordinate. For time-constant symmetric pot
tials the quantitytm(x0) can be obtained using the approa
of Malakhov @22# and is expressed in the following form
@14#:

tm~x0!5
B

x0
H E

0

1`

xe2w(x)dxE
0

x0
ew(u)du

1E
0

x0
xe2w(x)E

x0

x

ew(u)dudxJ . ~10!

If x050, it is not difficult to check thattm(x0)50. The
limits of validity of the exponential adiabatic approximatio
may then be investigated by comparing Eqs.~7! and ~9! di-
rectly with numerical simulations of the Fokker-Planck equ
tion in Eq. ~2!. In the following for simplicity we fixb51,
a(0)52, so that the maximal barrier heightDFmax5DF(t
50)51. The noise intensitykT is considered to be a fre
parameter that varies in the range 0.1 to 2. In the numer
calculations described below we always used an initial d
tribution located exactly in the minimum of the left potenti
well, x0521. With this choice we found that the expone
tial approximation gives minimal error in the evolution of th
mean coordinate~the probability, as an integral characteri
tic, is rather independent of the location of the initial dist
bution!.

A comparison between the adiabatic exponential appro
mation~7! ~dashed lines! and the results of a computer simu
lation ~solid lines!, for different values of the noise intensity
is presented in Figs. 1–3 for the decay probability. The



en
o
s
a
or
si
o

de
or
e
he
e
o

th
th

to a
of

o-

ds
he
-

, in
ad-

, we
s the
g
-

as
e
y

of
n,

of
n,

of
,

of
n,

1208 PRE 61ANDREY L. PANKRATOV AND MARIO SALERNO
figures refer to frequency values, respectively,v50.1, 0.5,
and 1.0. We see that forv50.1 ~or less!, the adiabatic ap-
proximation for the decay probability is in perfect agreem
with the results of the computer simulation with an error
the order of a few percent~the error is of the same order a
the one found for time-constant potentials at the same par
eter values@12,13#!. On increasing the frequency, the err
increases and it depends significantly on the noise inten
In particular, from Figs. 2 and 3 we see that the deviation
the adiabatic approximation from the numerical results
creases with increasing noise intensity. This fact is m
clearly seen atv51, where for small noise intensities th
decay of the probability occurs during a few periods of t
driver. We remark, however, that even at such high frequ
cies the adiabatic approximation gives quantitatively go
estimates. Similar comparisons for the time evolution of
mean coordinate are reported in Figs. 4–6. Here we see
the deviation of the adiabatic approximation~9! ~dashed

FIG. 1. Evolution of the decay probability for different values
noise intensity,v50.1; solid lines—results of computer simulatio
dashed lines—adiabatic approximation~7! ~plotted variables are
dimensionless!.

FIG. 2. Evolution of the decay probability for different values
noise intensity,v50.5; solid lines—results of computer simulatio
dashed lines—adiabatic approximation~7! ~plotted variables are
dimensionless!.
t
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lines! from the numerical results~continuous curves! is
larger than in the previous case. This can be ascribed
higher sensitivity of the mean coordinate to the location
the initial distribution~namely, at higher frequencies the p
tential minimum is effectively shifted from the pointx05
21 so that the initial distribution at the potential slope lea
to a higher error!. From these results we can say that t
modified adiabatic approximation is valid in the low fre
quency and large noise intensity limit. On the other hand
the region where the adiabatic approximation becomes in
equate, i.e., high frequencies and small noise intensities
found an interesting resonant phenomenon that resemble
‘‘resonant activation’’ reported for systems with fluctuatin
potential barrier in Refs.@15,16#. To describe this phenom
enon, consider the curves of the probability evolution atkT
50.1 and for different values of the driving frequency
reported in Fig. 7~a similar description can be given for th
evolution of the mean coordinate!. We see that the deca

FIG. 3. Evolution of the decay probability for different values
noise intensity,v51; solid lines—results of computer simulation
dashed lines—adiabatic approximation~7! ~plotted variables are
dimensionless!.

FIG. 4. Evolution of mean coordinate for different values
noise intensity,v50.1; solid lines—results of computer simulatio
dashed lines—adiabatic approximation~9! ~plotted variables are
dimensionless!.
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time of the probability has a minimum atv'1 ~an increase
or decrease of the frequency away from this value redu
the decay rate of the probability!. This resonant phenomeno
can be characterized also in terms of the mean transition
t(v) defined via probability evolution as@22,20,12,13#

t~v!5

E
0

`

@P~ t !2P~`!#dt

@P~0!2P~`!#
. ~11!

@Note that, in analogy with time-constant potentials@20#,
t(v) coincides with the corresponding MFPT for the co
sidered symmetric time-dependent case also, as one
check numerically#. In Fig. 8 we report the mean transitio
timest(v) as a function of the frequency for different valu
of noise intensity. We see that atkT50.1, t(v) has a mini-
mum atv'1 which almost disappears at large noise inte

FIG. 5. Evolution of mean coordinate for different values
noise intensity,v50.5; solid lines—results of computer simulatio
dashed lines—adiabatic approximation~9! ~plotted variables are
dimensionless!.

FIG. 6. Evolution of mean coordinate for different values
noise intensity,v51; solid lines—results of computer simulation
dashed lines—adiabatic approximation~9! ~plotted variables are di-
mensionless!.
es

e

an

-

sities ~for kT51 the effect has the order of the error!. In
spite of the similarity with the resonant activation pheno
enon, we remark that the potential barrier is not fluctuat
according to some probability distribution but oscillates
time, and the system is in the overdamped regime~resonant
activation is more characteristic for underdamped system
discussed in Ref.@8#!. The presence of a parametric period
forcing and of an external noise makes it natural to call t
effect ‘‘parametric stochastic resonance.’’

In Fig. 8 the dashed lines denote the results of the a
batic approximation. We see that although this approxim
tion fails to describe the parametric stochastic resonanc
works well in a wide range of parameters up to frequen
v'1 for small noise intensity~note that the error decrease
with increase of noise intensity!.

We have to mention here that taking the phase of
driving signal into consideration (cÞ0) will lead to signifi-
cantly different behavior of the mean transition time~11! in
the low frequency regime because the potential barrier he
at the initial instant will have a large excursion~from 0 to 1!
depending on the phase. However, preliminary results sh
that if the phase is randomly chosen, after averaging on

FIG. 7. Evolution of the decay probability for different values
frequency forkT50.1 ~plotted variables are dimensionless!.

FIG. 8. Mean decay timet(v) @Eq. ~11!# as a function of fre-
quency: solid lines—results of computer simulation; dashed line
adiabatic approximation~7! ~plotted variables are dimensionless!.
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1210 PRE 61ANDREY L. PANKRATOV AND MARIO SALERNO
we get qualitatively similar results~a detailed investigation
of this phenomenon will be reported elsewhere!.

Finally, we remark that the solid curvest(v) in Fig. 8
can easily be approximated at the extreme frequency regi
Indeed, forv→` ~high frequency limit! the cosine term in
the coefficienta(t)511cos(vt) averages to 1 so that th
potential reduces to the time-independent potentialF(x,t)
5bx42x2 and t(v) is expressed via the MFPT. On th
other hand, for 0<v<1, we can use the adiabatic approx
mation ~11! and ~7! described above.

Unfortunately, an analytical description of these curv
for the whole frequency range as a function of the no
intensity is presently lacking, this being an interesting pro
lem for future investigations.

IV. CONCLUSIONS

We have studied fluctuation-induced transitions in
‘‘quartic’’ potential with a periodically driven barrier. We
found that the exponential adiabatic approximation based
exact time characteristics gives good estimates in a w
range of parameters and it improves with increase of
noise intensity. This feature makes the adiabatic approxi
tion a useful tool for practical applications such as, for e
ample, Josephson electronic devices@3#, in which the driving
frequencies are usually rather small compared to the cha
teristic frequency of the Josephson junction. The surpris
its

ev

rg
s.

s
e
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n
e
e
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c-
g

thing is that the adiabatic approximation~6! usually used in
the limit of small noise intensity, in reality works better~up
to higher frequencies of driving signal! for larger noise in-
tensity. This could be due to the fact that the adiabatic
proximation @7,8# is based on the concept of instantaneo
escape and for higher noise intensity the escape beco
faster.

In the parameter range where the adiabatic approxima
fails, we have shown the existence of a different kind
resonant activation which we called parametric stocha
resonance. This phenomenon consists in the appearance
maximum in the decay rate of the probability or, equiv
lently, in a minimum in the mean transition time at a partic
lar value of the frequency of the driving signal. The ex
tence of this phenomenon in Josephson devices is pres
under investigation@23#.
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